collageradiomics

Release 0.2

BrIC Laboratory

Sep 07, 2022

CONTENTS:

1	Helpful Links	3
2	Code Documentation 2.1 Notes	5 5
3	Indices and tables	11
Py	Python Module Index	
In	dex	15

CoLlAGe captures subtle anisotropic differences in disease pathologies by measuring entropy of co-occurrences of voxel-level gradient orientations on imaging computed within a local neighborhood.

CoLlAGe is based on the hypothesis that disruption in tissue microarchitecture can be quantified on imaging by measuring the disorder in voxel-wise gradient orientations. CoLlAGe involves assigning every image voxel a 'disorder value' associated with the co-occurrence matrix of gradient orientations computed around every voxel.

Details on extraction of CoLlAGe features are included in [1]. After feature extraction, the subsequent distribution or different statistics such as mean, median, variance etc can be computed and used in conjunction with a machine learning classifier to distinguish similar appearing pathologies. The feasibility of CoLlAGe in distinguishing cancer from treatment confounders/benign conditions and characterizing molecular subtypes of cancers has been demonstrated in the context of multiple challenging clinical problems.

CHAPTER

ONE

HELPFUL LINKS

Instructions: README

RadxTools Website: https://radxtools.github.io

Original Paper: Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor

CHAPTER

TWO

CODE DOCUMENTATION

2.1 Notes

The attributes below represent the public output intended to be available to consumers of this module.

class collageradiomics.Collage(img_array, mask_array, svd_radius=5, verbose_logging=False, cooccurence_angles=[0.0, 0.7853981633974483, 1.5707963267948966, 2.356194490192345, 3.141592653589793, 3.9269908169872414, 4.71238898038469, 5.497787143782138], difference_variance_interpretation=DifferenceVarianceInterpretation.XMinusYVariance, haralick_window_size=-1, num_unique_angles=64)

Bases: object

This is the main object in the Collage calculation system. Usage: create a Collage object and then call the *execute()* function.

Parameters

- **image_array** (*numpy.ndarray*) image to run collage upon
- mask_array (numpy.ndarray) mask that correlates with the image
- svd_radius (int, optional) radius of svd. Defaults to 5.
- **verbose_logging** (*bool*, *optional*) This parameter is now ignored. Please use the python logging module.
- **cooccurence_angles** (*list*, *optional*) list of angles to use in the cooccurence matrix. Defaults to [x*numpy.pi/4 for x in range(8)]
- difference_variance_interpretation (DifferenceVarianceInterpretation, *optional*) Feature 10 has two interpretations, as the variance of **[x-y]** or as the variance of P(**[x-y]**).].Defaults to DifferenceVarianceInterpretation.XMinusYVariance.
- haralick_window_size (*int*, *optional*) size of rolling window for texture calculations. Defaults to -1.
- num_unique_angles (*int*, *optional*) number of bins to use for the texture calculation. Defaults to 64.

Attributes

collage_output

Array representing collage upon the mask within the full images.

cooccurence_angles

Iterable of angles that will be used in the cooccurence matrix.

difference_variance_interpretation

Feature 10 has two interpretations, as the variance of |x-y| or as the variance of P(|x-y|).].

haralick_window_size

Number of pixels around each pixel to calculate a haralick texture.

img_array

The original image.

is_3D

Whether we are using 3D collage calculations (True) or 2D (False)

mask_array

Array passed into Collage.

num_unique_angles

Number of bins to use for texture calculations.

svd_radius

SVD radius is used to calculate the pixel radius for the dominant angle calculation.

verbose_logging

This parameter is now ignored.

Methods

execute()	Begins haralick calculation.
<pre>get_single_feature_output(which_feature)</pre>	Output a single collage output feature.

property collage_output

Array representing collage upon the mask within the full images. If the input was 2D, the output will be height×width×13 where "13" is the number of haralick textures. If the input was 3D, the output will be height×width×depth×13x2 where "2" is the primary angle (element 0) or the secondary angle (element 1)

The output will have numpy.nan values everywhere outside the masked region.

Getter

Returns array the same shape as the original image with collage in the mask region.

Туре

numpy.ndarray

property cooccurence_angles

Iterable of angles that will be used in the cooccurence matrix.

Getter

Returns the Iterable of cooccurence angles.

Setter

Sets the angles to be used in the cooccurence matrix.

Туре

int

property difference_variance_interpretation

Feature 10 has two interpretations, as the variance of $|\mathbf{x}-\mathbf{y}|$ or as the variance of $P(|\mathbf{x}-\mathbf{y}|)$.]. Defaults to DifferenceVarianceInterpretation.XMinusYVariance.

Getter

Returns requested variance interpretation.

Setter

Sets requested variance interpretation.

Туре

DifferenceVarianceInterpretation

execute()

Begins haralick calculation.

Returns

An image at original size that only has the masked section filled in with collage calculations.

Return type

numpy.ndarray

get_single_feature_output(which_feature)

Output a single collage output feature. If this was a 3D calculation, the output will be of size height×width×depth×2 where the "2" represents the collage calculation from the primary angle (0) or secondary angle (1).

param which_feature

Either an integer from 0 to 12 (inclusive) or a HaralickFeature enum value

:type which_feature HaralickFeature

property haralick_window_size

Number of pixels around each pixel to calculate a haralick texture.

Getter

Returns requested number of pixels.

Setter

Sets requested number of pixels.

Туре

int

property img_array

The original image.

Getter

Returns the original image array.

Setter

Sets the original image array.

Туре

np.ndarray

property is_3D

Whether we are using 3D collage calculations (True) or 2D (False)

property mask_array

Array passed into Collage.

Getter

Returns the original mask array.

Setter

Sets the original mask array.

Туре

np.ndarray

property num_unique_angles

Number of bins to use for texture calculations. Defaults to 64.

Getter

Returns requested number of unique angles to bin into.

Type

int

property svd_radius

SVD radius is used to calculate the pixel radius for the dominant angle calculation.

Getter

Returns the SVD radius.

Setter

Sets the SVD radius.

Type

int

property verbose_logging

This parameter is now ignored. Please use the python logging module.

Getter

Returns True if on.

Setter

Turns verbose logging off or on.

Туре

bool

class collageradiomics.DifferenceVarianceInterpretation(value)

Bases: Enum

Feature 10 has two interpretations, as the variance of |x-y| or as the variance of P(|x-y|). See: https://ieeexplore. ieee.org/document/4309314

Parameters

Enum (DifferenceVarianceInterpretation) – Enumeration Helper For Haralick Features

ProbabilityXMinusYVariance = 1

XMinusYVariance = 0

class collageradiomics.HaralickFeature(value)

Bases: IntEnum

Enumeration Helper For Haralick Features

Parameters

IntEnum (HaralickFeature) – Enumeration Helper For Haralick Features

AngularSecondMoment = 0

Contrast = 1

Correlation = 2

DifferenceEntropy = 9

```
DifferenceVariance = 8
Entropy = 7
InformationMeasureOfCorrelation1 = 10
InformationMeasureOfCorrelation2 = 11
MaximalCorrelationCoefficient = 12
SumAverage = 4
SumEntropy = 6
SumOfSquareVariance = 3
SumVariance = 5
```

CHAPTER

THREE

INDICES AND TABLES

- genindex
- modindex
- search

PYTHON MODULE INDEX

C collageradiomics, 5

INDEX

Α

AngularSecondMoment	(collagera
diomics.HaralickFeature attribute),	8

С

Collage (class in collageradiomics), 5 collage_output (collageradiomics.Collage property), 6 collageradiomics module, 5 Contrast (collageradiomics.HaralickFeature attribute), 8 cooccurence_angles (collageradiomics.Collage property), 6 Correlation (collageradiomics.HaralickFeature attribute), 8

D

(collagera-
(collagera-
8
(collagera-
8
lass in col-

Ε

Entropy (*collageradiomics.HaralickFeature attribute*), 9 **execute()** (*collageradiomics.Collage method*), 7

G

get_single_feature_output() (collageradiomics.Collage method), 7

Η

I

img_array (collageradiomics.Collage property), 7

InformationMeasureOfCorrelation1 (collageradiomics.HaralickFeature attribute), 9 InformationMeasureOfCorrelation2 (collageradiomics.HaralickFeature attribute), 9 is_3D (collageradiomics.Collage property), 7

Μ

Ν

```
num_unique_angles (collageradiomics.Collage prop-
erty), 8
```

Ρ

```
ProbabilityXMinusYVariance (collagera-
diomics.DifferenceVarianceInterpretation
attribute), 8
```

S

SumAverage	(collageradiomics.Haralic	kFeature	at-			
tribut	te), 9					
SumEntropy	(collageradiomics.Haralic	kFeature	at-			
tribute), 9						
SumOfSquareVariance (coll						
diomics.HaralickFeature attribute), 9						
SumVariance	(collageradiomics.Haralic	kFeature	at-			
tribut	te), 9					
svd_radius (a	collageradiomics.Collage pr	operty), 8				

V

verbose_logging (collageradiomics.Collage property), 8

Х

XMinusYVariance (collageradiomics.DifferenceVarianceInterpretation attribute), 8